
k 4
-AOR BBS MARYLAND UNIV COLLEGE PARK COMPUTER VISION LAB F/ B 9/3

R REION PROPERTY CONFUTATION B ACTIVE BUADTREE NETWORA
I NO 79 U OUItI K A WU, A ROSENFELDb AFOSR 77 3271U

UNCLASSIFIED TR-823 A FOSR -TR-50BBORI

END

I 2-80

o-oo800091

000

_1 UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
* COLLEGE PARK, MARYLAND

2742

ftrzovo" top public relmae j
-.... stributiulitbL5

801+ 1

* B ,--.-

4 1

~:'TR-823 Jifvebt+ - 9
-OSR-77-327l7 T

Y y YACTfE UADTVZE 4FTWORKSO
¢0 Tsvi bitzki

Angela
Azriel/Rosenfeld-

Computer Vision Laboratory
Computer Science Center
College Park, MD 20742

ABSTRACT

Given a binary image stored in a cellular array, a local
reconfiguration process can be used to reconnect some of the
cells into a quadtree network representing the image. This
quadtree can also be "roped", i.e., nodes representing adja-
cent image blocks of the same size can be joined. Using the
roped quadtree network, image properties such as perimeter
and genus, as well as the quadtree distance transform, can be
computed in O(tree height)=O(log image diameter) time. The
area and centroid of the image can be computed in O(height)
time without the need for roping.

fo Pbac re=*i t. @"-

The support of the U.S. Air Force Office of Scientific
Research under Grant AFOSR-77-3271 is gratefully acknowledged,
as is the help of Kathryn Riley in preparing this paper.

it

....

1. Introduction

Given a binary image whose pixels are stored at the nodes

of an array processor, a tree-structured network of processors

representing the quadtree of the binary image is generated by

reconfiguration of the array processor based on successive

subdivision of array regions which store non-uniform pixel

values. (For the details see [l], Section 4.) A roped quadtree

is a quadtree whose adjacent blocks in the binary image (WHITE,

BLACK, or GRAY) are connected by pointers. In the following

sections we describe how an active quadtree can be roped and how

this roping helps compute the perimeter of the components in

the image or the distance transform of the quadtree, which gives

the nearest distance from each BLACK block in the image to the

nearest WHITE block border. The ropes are also used to compute

the genus, i.e., the number of BLACK components minus the number

of holes in them. The area and the centroid of an image stored

in an active quadtree are also easily computed.

All these computations need at most 2k bits of memory at

each processor, where 22k is the number of nodes in the array

processor.

The ropes are needed for checking adjacencies between blocks

in constant time. Without ropes, checking adjacencies in parallel

may take image diameter time, as many small blocks may try to

check the color of a common big neighbor and thus their messages

have to pass simultaneously through a common ancestor.

2. Roped quadtrees

A roped quadtree is a quadtree in which nodes corresponding

to adjacent blocks (BLACK, WHITE, GRAY) of equal size are con-

nected. These connections are called ropes. Note that only

adjacent blocks of equal size are roped, so that each node has

bounded degree.

The construction of a quadtree by reconfiguration of the array

processor storing a binary image is described in Section 4 of El].

In essence it is done by successive subdivision of blocks when-

ever they are found to be not uniformly colored.

A roped quadtree can be constructed in the same way except

that whenever a block is subdivided into four quadrants the root

node of the father block creates the ropes between its four

equal quadrants [2]. Such ropes are also established between

adjacent equal size blocks which do not belong to the same father.

This is done whenever adjacent roped blocks ("old rope" in Fig.

1), which do not belong to the same father, are both subdivided;

their equal-size adjacent sons are told by their fathers to

connect themselves by a new rope. The roped quadtree construction

takes O(h) time where h is the height of the quadtree.

The ropes can also be established, after the quadtree is

constructed, starting from the root and going down level by

level. Each father node knows its adjacent blocks via its own

ropes, and thus can tell its sons whom they should be roped to.

_______..
..... -

.

If there are two unequal adjacent BLACK blocks in a
quad-

tree then there is a GRAY block which includes the smaller

BLACK block and is roped to the bigger BLACK block.

1,C TAB
3u 1,noun~ed

juZt if ication-

Dist special

*LA

3. Perimeter

Let the image be of size 2k x 2k pixels. The perimeter of

all the BLACK components in the image represented by a quadtree

can be computed in parallel as follows: Starting from the root,

eachnode calculates and stores its level, which is one plus

the level of its father, with the root having level 0. Once

tho.liveJis known, each node knows the total length of its sides,

which is 2 at level i.

..... Using a bottom-up process, each GRAY node uses the information

.--. from its sons and calculates a 4-tuple (mllm 2 ,m3 ,m4) which gives

the total'length of the WHITE sections along each of its four

borders. Each BLACK node sums its four side lengths, and

depending on its roped neighbors, subtracts the following from

the sum S:

(1) For each BLACK roped neighbor the length t of a side is

subtracted from S, since that side is in the interior of a BLACK

component.

(2) For each GRAY roped neighbor (see BLACK node a and GRAY

node b in Fig. 2), we subtract 2*(Z-m.) from S, where m. is the

component of the GRAY neighbor's 4-tuple which corresponds to

the common border, so that Z-m. is the length of the BLACK

borders which are in the interior of a BLACK component. Twice

that amount is subtracted, because the small BLACK nodes which

are part of the GRAY neighbor do not subtract this common border

from their own perimeters. Finally, each BLACK node passes its

3' ,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

" REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

,. ORTR 8 O 0 0 9 1/ 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

REGION PROPERTY COMPUTATION BY ACTIVE Interim
QUADTREE NETWORKS 6. PERFORM1G ORG. REPORT NUMBER

TR-82M

7. AUTHOR($) S. CONTRACT OR GRANT NUMBER(S)

Tsvi Dubitzki
Angela Y. Wu
Azriel Rosenfeld AFOSR 77-3271

9. PERFORMING ORGANIZATION NAME AND ADDRESS / I0. PROGRAM ELEMENT, PROJECT, TASK

University of Maryland, Computer Vision AREA & WORK UNIT NUMBERS

Laboratory, Computer Science Center
College Park, MD 20742 61102F 2304/A2

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

November 1979

Air Force Office of Scientific Research/NM 13. NUMBER OF PAGES

Boiling AFB, Washington, DC 20332 24
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

IS.. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary end identify by block number)

Image processing
Pattern recognition
Quadtrees
Cellular processing

\ Parallel processing

ABSTRACT (Continue on reverse aide If necessary nd Identify by block number)

Given a binary image stored in a cellular array, a local reconfiguration pro-

cess can be used to reconnect some of the cel .s into a quadtree network repre-

senting the image. This quadtree can also be ropeds , i.e., nodes represent-

ing adjacent image blocks of the same size can be joined. Using the roped

quadtree network, image properties such as perimeter and genus, as well as the

quadtree distance transform, can be computed in 0(tree height)-O(log image

diameter) time, as can the area and centrod even with ut ropi .. /

f%1% FORM I "F

perimeter value up to the root for summing.

Clearly the perimeter computation takes at most O(h) time

steps where hsk is the height of the quadtree. Augmented memory

is needed for the GRAY nodes to store the 4-tuples, and is

bounded by k bits; the actual amount needed decreases with the

distance of a node from the root.

Ii

.

4. The distance transform

The distance transform of a quadtree is a quadtree in

which each BLACK node stores the distance from its center

to the nearest WHITE node border. The distance transform can

be computed in parallel by an active quadtree.

There are three basic distance measures between pairs of

points r,s [3]:

a) Euclidean: p(r,s) = V(xr-xs) 2+(yr-ys)z

b) City block: p(r,s) = IXr-XIs+Iyr-Ys

c) Checkerboard: p(r,s) = max(Ixr-xsI,Iyr-Ys1)

The checkerboard distance is chosen to work with here since the

region which satisfies p(r,s)<d, for constant d, is a square

for this measure.

The parallel computation of the distance transform is done

as follows: First, each GRAY node computes a 4-tuple giving the

distances between the borders of the WHITE descendants closest

to its four sides and these sides. (The method of computing this

4-tuple is described at the end of this section.) Then the

root of the quadtree sends a signal down to all the BLACK leaves

of the tree to compute their smallest distances to a WHITE

border. The first ancestral level has at least one WHITE node

as a son, otherwise it would not have been split in the quadtree

construction process. Thus the distance transform of the BLACK

leaves having WHITE brothers is 2k-i where i is the level of

these leaves below the root of the tree (see Fig. 3).

Computing the distance transform for lower level (smaller

i) black nodes, having only GR-.Y Or BLACK roped neighbors, is

more complicated. Consider Fig. 4 where we have BLACK nodes

adjacent (8-adjacency) to GRAY nodes. A BLACK node may have

its closest WHITE border either at an adjacent GRAY or WHITE

node (8-adjacency) of the same size or at an adjacent WHITE

node of larger size. BLACK nodes will be informed about the

existence of adjacent WHITE nodes larger than they are by having

each WHITE node convey its color (one bit) through its father

to all the other BLACK descendants of that father which border

its sides and corners. For example, in Fig. 5 the numbered

BLACK nodes (1-6) will receive (through their common ancestor)

the message that a WHITE node, numbered 7, borders them. Note

that in dealing with checkerboard distance we have to deal with

8-adjacency of nodes. If one of the 8-adjacent nodes of the

given BLACK node is a WHITE node bigger than it then the dis-

tance transform is immediately 2 k - i- (e.g. node 1 in Fig. 5);

otherwise, the given BLACK node must have at least one GRAY

brother, or it would not have been generated. The BLACK node

may have its closest WHITE border in any of its 8-adjacent

nodes. Therefore it consults with them via the ropes as fol-

lows: For the 4-adjacent GRAY neighbors it checks that compo-

nent of the 4-tuple belonging to the side adjacent to it; and

for the 8-adjacent GRAY neighbors it checks the two components

of the 4-tuple belonging to the sides closest to it (e.g.

checking the NW gray neighbor involves checking the eastern

and southern components of its 4-tuple). Once the given BLACK

node finds out which one of its GRAY neighbors has a WHITE

descendant closest to it, it adds its own radius (2
k -i -l at

level i) to the appropriate component of the 4-tuple of that

closest GRAY neighbor and gets its distance transform. The

above process of consulting with GRAY neighbors is done sem'. en-

tially and clockwise: First consulting with a 4-adjacent GRiUY

node (if any), then with an 8-adjacent GRAY node (if any) roped

to the last 4-adjacent node in a clockwise direction, then with

another 4-adjacent GRAY node, etc. For example in Fig. 6 the

BLACK node 0 checks its GRAY neighbors 1, 2, 3, 4 in sequence.

Upon completion of the distance transform at the nodes

below it, a GRAY node passes a signal up to its father. The

whole computation terminates when the root of the quadtree gets a

completion signal from its four sons. Since the computation of

the distance transform starts simultaneously at the BLACK leaves

and goes up the tree, it takes Ok) time steps for the process

to terminate at the root where 2 x2 is the image size. Clearly

a BLACK node having no adjacent WHITE nodes of the same size

should wait until its 8-adjacent GRAY neighbors compute their

4-tuples.

i

Construction of the 4-tuple of distances

First, all the leaves of the quadtree determine the smallest

distances from the borders of WHITE nodes inside them to their

four sides. Since leaves are either BLACK or WHITE their 4-

z+l Z+ltuples are immediate: (0,0,0,0) for WHITE nodes and(2 ,2

2 +i 2 +) for BLACK nodes where Z=k-i, i is the level of the

leaf in the quadtree, and 2kx2k is the image size. Note that

the 4-tuple defined for a BLACK node has no distance meaning

but is needed for computing the 4-tuples of its ancestors. When

all four sons of a GRAY node notify their father that they have

finished computing their 4-tuples, that GRAY node computes its

own 4-tuple (91 i2, 3, m 4) as follows:
, i) (i) Ci) Ci)

Suppose m(i ,m2 ,m3 ,m_) for i=1,2,3,4 are the 4-tuples

of the four sons of the GRAY node and suppose (1) (2) (3) (4)

stand for NE, SE, SW, NW and 1,2,3,4 for North, East, South, and

West, respectively (Fig. 7). Then:

miUmi~) m(i----) --2) Z(i-3)Z

min{m ,m. +2 ,m. +2 }
1. 2. 1 1

i = 1,2,3,4

where (,(,(i-) are cyclic subtractios for i-1,2,3,4.

Here Z=k-i as above. Augmented memory of size Z-lsk is needed

at the nodes to store these 4-tuples.

5. The Euler number

The Euler number (or genus) of a binary image is the number

of connected components minus the number of holes in the image.

It is proved in [41 that for a binary image represented by a

quadtree the genus is equal to B-A+S where B is the number of

BLACK nodes, A is the number of pairs of adjacent BLACK nodes,

and S is the number of triples or quadruples of BLACK nodes

in the image which surround a point.

In computing the genus each GRAY node in the quadtree should

first compute three 4-tuples: One gives the number of BLACK nodes

along each of its four sides. The second gives the number of

adjacent BLACK nodes in the conponents along each of its sides.

The third indicates whether a GRAY node has BLACK nodes

in its four corners. The way these 4-tuples are constructed is

described at the end of this section and is done bottom-up during

the first phase of the genus computation.

The parallel computation of the genus in an active quadtree

is done as follows:

Phase 1: Compute B by sending a message from the root of

the quadtree down to the leaves ordering each of the BLACK nodes

to send a signal to the root. The root node sums these signals

and after O(k) time it has the value of B.

Phase 2: Computing A: The root orders each BLACK node to

sense its BLACK or GRAY neighbors. If a roped neighbor along

a side of a BLACK node is BLACK we have a pair of equal size

tM

BLACK nodes (ropes exist only between nodes corresponding to

equal size blocks). Since each of these BLACK nodes counts

the pair (because of symmetry), each one should count only 1/2

so that the count sums up to 1 pair at a higher level of the

tree. If the roped neighbor of a given BLACK node, say a, is

GRAY, say b, the GRAY node might have saO descendant BLACK

nodes that are adjacent to node a (s=2 in Fig. 8). Thus there

are s BLACK pairs formed by node a on one side and the s small

BLACK nodes on the other side. The BLACK node a looks for

equal size GRAY neighbors along each of its sides and orders

them to pass up to their ancestor the number of BLACK pairs

generated by their adjacencies with node a, which is given by

the appropriate component of the first 4-tuple stored at each

GRAY node.

Phase 3: Computing S: We are looking for triples or qua-

druples of BLACK nodes. Triples may occur along the sides of

adjacent nodes (Fig. 9). Quadruples are formed only at a common

corner of four BLACK nodes. This phase is divided into two

stages: In the first one the number of triples of BLACK nodes

which surround a point is computed as in the case of pairs in

phase 2 except that now each GRAY node uses its second 4-tuple

giving the number of BLACK nodes in each connected component

along its sides. Suppose the second 4-tuple looks like
1 1 1 1 2 2 2 3 33 3(s1 , s2 , s3,. . si), (Sl,S2, ... ,sji), (Sl,'S2, , ... ,s k ,

4(4 4(s1 s 1 .,e) where the superscripts have the meaning 1-North,

2-East, 3-South, 4-West (see Fig. 7). (Storing such a 4-tuple

needs augmented memory.) Then whenever a BLACK node senses a

GRAY node, say on its northern side, it orders the GRAY node to
k

send up the tree the value E (Sn-1), which is the number of
n=l

triples formed along their common border, plus the number of

those triples detected at descendant nodes below it.

In the second stage the number of BLACK quadruples which

surround a point in the image is computed. Each one of the

BLACK leaves in the quadtree is asked by the root to look for

three adjacent BLACK nodes having a common corner with it. Thi.s

is done by each BLACK node trying to sense its two neighbors in

two perpendicular directions, say W and S, and then sense the

southern neighbor of the western one which is the western neigh-

bor of the southern one. The sensing process uses the third

4-tuple stored at the neighboring GRAY nodes. The largest GRAY

node in the quadruple is the one which counts it since the smaller

ones cannot sense the largest one via the ropes. If there are

two largest BLACK nodes then each of them counts 1/2; if three

largest, 1/3; and if all four at a corner are equal, each

one of them counts 1/4.

Computing the three 4-tuples of a GRAY node

The first 4-tuple (s1 ,S2 ,s3 ,S4) gives the number of BLACK

nodes along the node's N, E, S, and W sides correspondingly.

It is built bottom up in the quadtree as follows: At the first

level above the leaves a GRAY nodes sets s=l or 2 if one or

two of its northern sons are BLACK, otherwise sl-0. Let

(s,,s 2,s3 ,S4) denote the 4-tuple at a father GRAY node. Then

- NW NE5i= S +Sl

NE SE
s2 = 2 s2

3 = s3 +
SWsN

4 4 4

The subscripts denote the corresponding sons of the given GRAY

father.

The second 4-tuple is also built bottom up: For BLACK nodes

the second 4-tuple is (1,1,1,1), while WHITE nodes do not have

such a second 4-tuple. At lower levels of the quadtree a combi-

nation of the two northern descendants of a GRAY node gives the

following "northern" part of the second 4-tuple which indicates

the series of numbers of connected BLACK nodes along that GRAY

node's northern border (see Fig. 10) .

1 1 1 2 NW NW NW NW
Let ((s I P . s) (s l)) and (C1 ,C2 ,C3 ,C 4

be the second and third 4-tuples of the NW son of the given

GRAY node and let ((s1,s l ..."SOP (s2,......)~~!.'!2'''!e' ~!'**~**~ and

NE NE NE NE

(C1 ,C2 ,C3 ,C4) be the second and third 4-tuples of the NE sons of

that node. Then the "northern" part of the second 4-tuple of

the GRAY father is:

1 1 1 11 1NE NW(sSk+....,...,)if (C E and C) = 1
11 2 k1 1 1- 2or (s ,sl,...,s ,SlS.....,st) otherwise.

Similar considerations give the second 4-tuple for the other

sides of a GRAY node.

The third 4-tuple (CI,C2 ,C3 ,C4) at a GRAY node indicates

the existence of BLACK nodes at its corners. BLACK nodes should

have C1 =C2=C3=C4=1 and WHITE nodes C1=C2=C3=C4=0. At higher

ancestral levels a GRAY node has a third 4-tuple (EIC2 ,C3 ,C 4)

computed by:

-- NW NE =SE SW
C C2 3 ; C4 C

*1

6. Area

The parallel computation of the area of the BLACK components

in the image is done as follows: The root node of the quadtree

orders each BLACK node to compute its area and pass it up to

the root for summation. Since each BLACK node stores its level

i in the quadtree by a top down process, it can compute its

area: 2 (k-i)2 Storing area values needs augmented memory of

k bits per node. The parallel summation takes at most O(k)

time steps for a 2kx2k image. Ropes are not needed for the

computation.

- M im , mu

7. Centroid

Assume that the root of the quadtree stores the total

area of the BLACK components in the image and each BLACK node

stores its own area Si at level i.

The root of the quadtree triggers the computation of the

coordinates of each of its BLACK nodes (their geometrical

centers) as follows: The root has the coordinates (0,0). It

computes the coordinates of each of its BLACK sons by adding or

subtracting 2 k2 to its own coordinates. Recursively each GRAY

node at level i below the root appropriately adds or subtracts
2k- 2-i
2 k from its own coordinates to compute the coordinates of its

BLACK sons. This process terminates at the BLACK leaves of the

quadtree. Then starts a bottom-up process of computing the

moments of each BLACK leaf by multiplying its coordinates by

its area and passing it up to the root of the quadtree. These

moments are summed at GRAY nodes on the way up to the root. Upon

getting the final sum (ZXiSi,EYiSi) the root divides it by the

total area of the BLACK components in the image to give the

coordinates of the centroid.

Ropes are not needed for the centroid or area computation

since there is no interaction between adjacent nodes. The aug-

mented memory needed at the nodes is at most 3k.

7. Conclusions

Tremendous savings are achieved by parallel computation

of the perimeter, distance transform, and genus of an image

represented by a quadtree. The parallel computation takes time

on the order of log diameter of the image in all these cases.

Sequential computation takes log diameter times the number of

nodes in the image (for perimeter and distance; see [2] and (5])

or times the number of BLACK nodes in the image (for genus; see

[41). Note that the number of BLACK nodes in the checkerboard

case is on the order of the square of the image diameter. The

same comparison applies to the computation of the area or cen-

troid of the image.

References

(1] Tsvi Dubitzki, Angela Wu, Azriel Rosenfeld, Local recon-
figuration of networks of processors: arrays, trees, and
graphs. TR-790, Computer Science Center, University of
Maryland, July 1979.

[2] G. M. Hunter and K. Steiglitz, Operations on images using
quadtrees, IEEE Transactions on Pattern Analysis and
Machine Intelligence, April 1979.

(3] Hanan Samet, A distance transform for images represented
by quadtrees. TR-780, Computer Science Department, Univer-
sity of Maryland, July 1979.

(4] Charles R. Dyer, Computing the Euler number of an image
from its quadtree. TR-769, Computer Science Center, Univer-
sity of Maryland, May 1979.

(5] Hanan Samet, Computing perimeters of images represented by
quadtrees. TR-755, Computer Science Department, University
of Maryland, April 1979.

new rope

old rope

6

Fig. 1

b

Fig. '2

Fig. 3

W B--BLACK
G--GRAY
W--WHITE

-cl --- ropes

Bl' G'

G W W

Fig.

Fig I

G B G
2; - - .'3I - 7

G' I B 0 4
F G

'B B T B

Fig. 6

(4) (3.

4 2

(3) (2)

Fig. 7

Fig. 8

Fig. 9

si=2 s?=2 si=2 si=l s1=2 s=

NW NE

son son

4 4

Fig. 10. A GRAY node and its second 4-tuple along

the northern border. c2NW=l; S1NE
= .

